3.5 \(\int \sinh ^{-1}(a x) \, dx\)

Optimal. Leaf size=25 \[ x \sinh ^{-1}(a x)-\frac {\sqrt {a^2 x^2+1}}{a} \]

[Out]

x*arcsinh(a*x)-(a^2*x^2+1)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5653, 261} \[ x \sinh ^{-1}(a x)-\frac {\sqrt {a^2 x^2+1}}{a} \]

Antiderivative was successfully verified.

[In]

Int[ArcSinh[a*x],x]

[Out]

-(Sqrt[1 + a^2*x^2]/a) + x*ArcSinh[a*x]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \sinh ^{-1}(a x) \, dx &=x \sinh ^{-1}(a x)-a \int \frac {x}{\sqrt {1+a^2 x^2}} \, dx\\ &=-\frac {\sqrt {1+a^2 x^2}}{a}+x \sinh ^{-1}(a x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 25, normalized size = 1.00 \[ x \sinh ^{-1}(a x)-\frac {\sqrt {a^2 x^2+1}}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSinh[a*x],x]

[Out]

-(Sqrt[1 + a^2*x^2]/a) + x*ArcSinh[a*x]

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 37, normalized size = 1.48 \[ \frac {a x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \sqrt {a^{2} x^{2} + 1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x),x, algorithm="fricas")

[Out]

(a*x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1))/a

________________________________________________________________________________________

giac [A]  time = 0.11, size = 35, normalized size = 1.40 \[ x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \frac {\sqrt {a^{2} x^{2} + 1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x),x, algorithm="giac")

[Out]

x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1)/a

________________________________________________________________________________________

maple [A]  time = 0.02, size = 26, normalized size = 1.04 \[ \frac {a x \arcsinh \left (a x \right )-\sqrt {a^{2} x^{2}+1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsinh(a*x),x)

[Out]

1/a*(a*x*arcsinh(a*x)-(a^2*x^2+1)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.29, size = 25, normalized size = 1.00 \[ \frac {a x \operatorname {arsinh}\left (a x\right ) - \sqrt {a^{2} x^{2} + 1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x),x, algorithm="maxima")

[Out]

(a*x*arcsinh(a*x) - sqrt(a^2*x^2 + 1))/a

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 23, normalized size = 0.92 \[ x\,\mathrm {asinh}\left (a\,x\right )-\frac {\sqrt {a^2\,x^2+1}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asinh(a*x),x)

[Out]

x*asinh(a*x) - (a^2*x^2 + 1)^(1/2)/a

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 20, normalized size = 0.80 \[ \begin {cases} x \operatorname {asinh}{\left (a x \right )} - \frac {\sqrt {a^{2} x^{2} + 1}}{a} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asinh(a*x),x)

[Out]

Piecewise((x*asinh(a*x) - sqrt(a**2*x**2 + 1)/a, Ne(a, 0)), (0, True))

________________________________________________________________________________________